继前几日推出完开源大模型Llama 3.1后,就在刚刚,Meta在 SIGGRAPH 上重磅宣布 Segment Anything Model 2 (SAM 2) 来了。在其前身的基础上,SAM 2 的诞生代表了领域内的一次重大进步 —— 为静态图像和动态视频内容提供实时、可提示的对象分割,将图像和视频分割功能统一到一个强大的系统中。
SAM 2可以快速、精确地在任何视频或图像中选择对象。它不仅能在图像中分割对象,还能在视频中追踪对象,即使这些对象在训练时从未见过。该模型支持实时互动,非常适合各种实际应用,比如视频编辑和互动式媒体内容制作。
SAM2的核心优势在于其快速精准的对象分割能力,无论是静态图像还是动态视频,它都能轻松应对。这一模型不仅能够识别和分割图像中的单一对象,还能在视频流中实时追踪对象,即便这些对象在训练阶段未曾出现过。SAM2的实时互动特性,使其在视频编辑和互动媒体内容制作等领域具有广泛的应用前景。
它采用了统一的架构设计,无需针对图像和视频分别训练,就能同时处理两种类型的分割任务。这种设计大大提高了模型的通用性和效率,为各种视觉应用场景提供了强大支持。
与 SAM 一样,SAM 2 也会开源并免费使用,并在 Amazon SageMaker 等平台上托管。为了履行对开源 AI 的承诺,Meta 使用宽松的 Apache 2.0 协议共享代码和模型权重,并根据 BSD-3 许可分享 SAM 2 评估代码。
正如扎克伯格上周在一封公开信中指出的那样,开源人工智能比任何其他现代技术都更具有潜力,可以提高人类的生产力、创造力和生活质量,同时还能加速经济增长并推动突破性的医学和科学研究。人工智能社区利用 SAM 取得的进展给我们留下了深刻的印象, SAM 2 必将释放更多令人兴奋的可能性。
而SAM 2 前脚刚上线,大家就迫不及待的用起来了:「在 Meta 未提供的测试视频上试用 SAM 2。效果好得令人瞠目结舌。」
同时还有网友认为,SAM 2 的出现可能会使其他相关技术黯然失色。
SAM 能够了解图像中对象的一般概念。然而,图像只是动态现实世界的静态快照。许多重要的现实用例需要在视频数据中进行准确的对象分割,例如混合现实、机器人、自动驾驶车辆和视频编辑。Meta 认为通用的分割模型应该适用于图像和视频。
图像可以被视为具有单帧的非常短的视频。Meta 基于这个观点开发了一个统一的模型,无缝支持图像和视频输入。处理视频的唯一区别是,模型需要依靠内存来调用该视频之前处理的信息,以便在当前时间步准确地分割对象。
视频中对象的成功分割需要了解实体在空间和时间上的位置。与图像分割相比,视频提出了重大的新挑战。对象运动、变形、遮挡、光照变化和其他因素可能会因帧而异。由于摄像机运动、模糊和分辨率较低,视频的质量通常低于图像,这增加了难度。因此,现有的视频分割模型和数据集在为视频提供可比的「分割任何内容」功能方面存在不足。
Meta 构建 SAM 2 和新 SA-V 数据集来解决这些挑战。
与用于 SAM 的方法类似,Meta 对视频分割功能的研究涉及设计新任务、模型和数据集。
然后,研究团队使用 SAM 2 来帮助创建视频对象分割数据集 ——SA-V,该数据集比当前存在的任何数据集大一个数量级。研究团队使用它来训练 SAM 2 以实现 SOTA 性能。
研究团队设计了一个可提示的视觉分割任务,将图像分割任务推广到视频领域。SAM 经过训练,可以将图像中的点、框或蒙版作为输入,以定义目标对象并预测分割蒙版。
借助 SAM 2,我们训练它接受视频任意帧中的输入提示,以定义要预测的时空蒙版(即“蒙版小片”)。
SAM 2 根据输入提示立即预测当前帧上的蒙版,并将其在时间上传播以生成所有视频帧中的目标对象的蒙版小片。一旦预测了初始蒙版小片,就可以通过在任意帧中向 SAM 2 提供额外提示来迭代细化它。这可以根据需要重复多次,直到获得所需的蒙版小片。
为了收集一个大型且多样化的视频分割数据集,Meta 建立了一个数据引擎,其中注释员使用 SAM 2 交互地在视频中注释 masklet,然后将新注释的数据用于更新 SAM 2。他们多次重复这一循环,以迭代地改进模型和数据集。与 SAM 类似,Meta 不对注释的 masklet 施加语义约束,注重的是完整的物体(如人)和物体的部分(如人的帽子)。
借助 SAM 2,收集新的视频对象分割掩码比以往更快,比每帧使用 SAM 快约 8.4 倍。此外,Meta 发布的 SA-V 数据集的注释数量是现有视频对象分割数据集的十倍以上,视频数量大约是其 4.5 倍。
总结而言,SA-V 数据集的亮点包括:
在大约 51,000 个视频中有超过 600,000 个 masklet 注释;
视频展示了地理上不同的真实场景,收集自 47 个国家;
覆盖整个对象、对象中的一部分,以及在物体被遮挡、消失和重新出现的情况下具有挑战性的实例。
虽然 SAM 2 在分割图像和短视频中的对象方面表现出色,但仍然会遇到诸多挑战。
SAM 2 可能会在摄像机视角发生剧烈变化、长时间遮挡、拥挤的场景或较长的视频中失去对对象的追踪。
在实际应用中,Meta 设计了交互式模型来缓解这一问题,并通过在任意帧中点击校正来实现人工干预,从而恢复目标对象。
当目标对象只在一帧中指定时,SAM 2 有时会混淆对象,无法正确分割目标,如上述的马匹所示。在许多情况下,通过在未来帧中进行额外的细化提示,这一问题可以完全解决,并在整个视频中获得正确的 masklet。
虽然 SAM 2 支持同时分割多个多带带对象的功能,但模型的效率却大大降低。实际上,SAM 2 对每个对象进行多带带处理,只利用共享的每帧嵌入,不进行对象间通信。虽然这简化了模型,但纳入共享的对象级上下文信息有助于提高效率。
在同一帧或其他帧中添加进一步的提示来优化预测只能部分缓解此问题。在训练过程中,如果模型预测在帧间抖动,不会对其进行任何惩罚,因此无法保证时间上的平滑性。提高这种能力可以促进需要对精细结构进行详细定位的实际应用。
虽然 Meta 的数据引擎在循环中使用了 SAM 2,且在自动 masklet 生成方面也取得了长足进步,但仍然依赖人工注释来完成一些步骤,例如验证 masklet 质量和选择需要校正的帧。
因此,未来的发展需要进一步自动化这个数据注释过程,以提高效率。要推动这项研究,还有很多工作要做。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:/yun/131142.html
随着大型模型技术的持续发展,视频生成技术正逐步走向成熟。以Sora、Gen-3等闭源视频生成模型为代表的技术,正在重新定义行业的未来格局。而近几个月,国产的AI视频生成模型也是层出不穷,像是快手可灵、字节即梦、智谱清影、Vidu、PixVerse V2 等。就在近日,智谱AI秉承以先进技术,服务全球开发者的理念,宣布将与清影同源的视频生成模型——CogVideoX开源,以期让每一位开发者、每一家企...
摘要:部署旨在帮助开发人员和研究人员训练大规模机器学习模型,并在移动应用中提供驱动的用户体验。现在,开发人员可以获取许多相同的工具,能够在大规模分布式场景训练模型,并为移动设备创建机器学习应用。 AI 模型的训练和部署通常与大量数据中心或超级计算机相关联,原因很简单。从大规模的图像、视频、文本和语音等各种信息中持续处理、创建和改进模型的能力不是小型计算擅长的。在移动设备上部署这些模型,使其快速轻量...
摘要:在本次竞赛中,南京信息工程大学和帝国理工学院的团队获得了目标检测的最优成绩,最优检测目标数量为平均较精确率为。最后在视频目标检测任务中,帝国理工大学和悉尼大学所组成的团队取得了较佳表现。 在本次 ImageNet 竞赛中,南京信息工程大学和帝国理工学院的团队 BDAT 获得了目标检测的最优成绩,最优检测目标数量为 85、平均较精确率为 0.732227。而在目标定位任务中Momenta和牛津...
阅读 12·2024-09-14 16:58
阅读 12·2024-09-14 16:58
阅读 105·2024-08-29 18:47
阅读 312·2024-08-16 14:40
阅读 107·2024-08-14 17:54
阅读 112·2024-08-13 16:33
阅读 204·2024-08-08 16:39
阅读 350·2024-08-07 15:04